Chiral organophosphorus ligands derived from the levopimaric acid-maleic anhydride adduct

Aleksander G. Tolstikov,* a Olga V. Tolstikova, a Tatiana B. Khlebnikova, a Kirill I. Zamaraev, $^{\dagger a}$ Vakhtang G. Kasradze, b Olga S. Kukovinets b and Leonid V. Spirikhin b

^a Federal Scientific Centre, G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation. Fax: +7 3832 35 5756

The levopimaric acid—maleic anhydride adduct 1 has been used as a starting compound to synthesize chiral organophosphorus ligands 11–13 and 15–17 for transition metal complexes.

Asymmetric transformations catalysed by transition metal complexes with chiral organoelement (P-, N-, S-donor) ligands are of common knowledge. A great number of optically active compounds capable of catalysing the processes of hydrogenation and isomerization of prochiral substrates to provide high chemical and optical yields of products have been obtained to date. For this purpose a number of organophosphorus ligands based on esters of L-, D-tartaric acids, amino acids, monoterpenes, binaphthyl derivatives, amino acids, monoterpenes, binaphthyl derivatives, amino acids, monoterpenes, binaphthyl derivatives, the synthesized. Even with impressive progress in this field, the synthesis of chiral ligands, which combine availability with high selectivity of catalysts based thereon, is still a pressing problem.

While making studies in the field, we paid attention to the adduct of levopimaric acid with maleic anhydride 1. 11,12 Owing to its enantiomeric purity, specific molecular structure and ease of preparation, it is an attractive substrate to be transformed to chiral compounds. A retrosynthetic analysis allowed us to define three principal routes for transformation of maleopimaric acid 1 to phosphorus-containing ligands (see Scheme 1).

Trimethyl ester 2¹³ was produced *via* route A (Scheme 2); the ester was reduced by LiAlH₄ to 5a,8-dimethyl-12-isopropyl-1,2,8-trihydroxymethyl-4,4a,5,5a,6,7,8,8a,9,10-decahydro-3,10a-ethenophenanthrene 3 (80%) which reacted with benzaldehyde dimethoxyacetal to produce a benzylidenedioxy derivative 4 (95%). The latter was transformed to monobenzyl ether 5 (56%) under the action of benzyl chloride in the presence of KOH. Reaction of 4 with 2-methoxyethoxy-

methylchloride (MEMCl) in a solution of di(isopropyl)ethylamine was used as an alternative to selectively protect the CH_2OH group at the C-8 atom. The yield of the MEM ether 6 was 90%.

However, it seemed reasonable to use a sample of monobenzyl ether $\bf 5$ since, apart from the desired deprotection of the 1,2-oxymethyl groups, treatment of compound $\bf 6$ with p-toluenesulfonic acid in methanol resulted in partial hydrolysis of the MEM-protecting function to form the starting triol $\bf 3$ (40%). Hydrolysis of ether $\bf 5$ allowed a quantitative yield of diol $\bf 7$ to be obtained. Along with expected ditosylate $\bf 8$ (75%), a product $\bf 10$ from dehydration (25%) was formed upon interaction of $\bf 7$ with TsCl in a pyridine solution at $\bf -5$ °C. Compound $\bf 10$ predominated in the reaction mixture (65%) when the reaction was conducted at room temperature.

We succeeded in obtaining the target bis(phosphine) 11 in 45% yield through interaction of ditosylate 8 with PPh₂Na; the latter was prepared *in situ* according to ref. 14. To enhance the yield of the target product, we tried to involve dimesylate 9 which was synthesized in its turn from monobenzyl ether 7. Unfortunately, reaction of 9 with a nucleophilic reactant produced a mixture of polar products, among which only diol 7 was isolated and identified.

Optically active phosphinites 12 (62%) and 13 (75%) were synthesized *via* interaction of diol 7 with PPh₂Cl and $(C_6F_5)_2$ PCl, respectively, in the presence of equimolar amounts of pyridine in a solution of anhydrous THF. The formation of substituted tetrahydrofuran 10 (\approx 12%) along with the target products was observed in both cases.

To obtain monophosphine 15 (route B, Scheme 3), transformation of acetonide 4 to the corresponding monotosylate 14 (70%) followed by interaction of the latter with

^b Institute of Organic Chemistry, Ufa Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russian Federation.

[†] Academician Kirill I. Zamaraev, an outstanding specialist in catalysis and chemical kinetics, died on the 26th June 1996.

Scheme 2 Reagents and conditions: i, LiAlH₄, Et₂O, 35 °C, 48 h; ii, (MeO)₂CHPh, *p*-TsOH, CH₂Cl₂, 20 °C, 10 h; iii, BnCl, KOH, DMSO, 25 °C, 24 h; iv, MEMCl, Prⁱ₂EtN, 25 °C, 12 h; v, *p*-TsOH, MeOH, 25 °C, 2.5 h; vi, TsCl, Py, -5 °C, 48 h or MsCl, Et₃N, -5 °C, 3 h; vii, PPh₂Na, 1,4-dioxane—THF, 25 °C, 3 h; viii, PPh₂Cl, Py, THF, 25 °C, 12 h; ix, (C₆F₅)₂PCl, Py, THF, 25 °C, 12 h.

9 R = OMs

PPh₂Na under the conditions reported in ref. 14 were needed. The yield of phosphine **14** was not higher than 32%. Chiral ligand **16** (65%) was prepared *via* treatment of **4** with PPh₂Cl in a solution of anhydrous pyridine.

Phosphinite 17 originating from a family of tridentate organophosphorus ligands (route C) was synthesized from triol 3 using a conventional procedure (see Scheme 3). The structures of all the final and intermediate compounds are supported by spectral and elemental analytical data.[‡]

Chiral complexes 18 to 20 were obtained through the interaction of bidentate ligands 11 to 13 with di- μ -chlorobis(cyclooctadiene)dirhodium and NaClO₄ in acetone solution. We studied their catalytic activities and enantioselectivities with hydrogenation and isomerization of some prochiral substrates as examples. Hydrogenation of itaconic acid 21 in the presence of Et₃N in a solution of THF catalysed by [Rh(C₈H₁₂)11] $^+$ ClO $^-$ 18 (0.1 mmol of catalyst; 0.6 mmol

Scheme 3 Reagents and conditions: i, TsCl, Py, 20 °C, -5 °C, 24 h; ii, PPh₂Na, 1,4-dioxane—THF, 25 °C; iii, PPh₂Cl, Py, 20 °C, 3 h.

of Et₃N; 10 mmol of olefinic acid) produced (*R*)-methylsuccinic acid **22**, $[\alpha]_D^{22}$ +1.27° (*c* 0.4, EtOH), e.e. 7.5%, in 85% yield.

$$[Rh(C_8H_{12})Cl]_2 \xrightarrow{i} [Rh(C_8H_{12})11 \text{ or } 12 \text{ or } 13]^+ClO_4^-$$

$$18-20$$

$$CO_2H \xrightarrow{ii} CO_2H$$

$$CO_2H$$

$$21 \qquad 22$$

Scheme 4 Reagents and conditions: i, NaClO₄, 11 or 12 or 13, Me₂CO, 20 °C, 0.5 h; ii, $\left[Rh(C_8H_{12})11\right]^+ClO_4^-$, Et₃N, 1 atm. of H₂, THF, 25 °C, 1.5 h.

A detailed discussion of the results of enantioselective transformations involving the new Rh^I-based catalysts will follow.

This work is supported by the Russian Foundation for Basic Research (grant no. 95-03-08517) and Federal Scientific Centre G. K. Boreskov Institute of Catalysis (grant nos. 3.6.90 and 1.1.4). The authors are thankful to Professor G. G. Furin who provided a sample of chlorodi(pentafluorophenyl)-phosphine.

 ‡ Spectral data for 11: mp 102–104 °C (MeOH), [α]_0^{20} -20.3 ° (c 0.7, CHCl_3); 13 C NMR (CDCl_3) δ 15.61 (CH_3), 17.28 (C-6), 18.20 (CH_3CH), 19.44 (C-9), 20.30 (CH_3CH), 21.45 (CH_3), 29.87 (C-4), 32.61 (C-10), 33.16 (C-3), 35.80 (C-5), 36.42 (C-7), 36.89 (C-10a), 37.32 (C-4a), 38.34 (C-8), 38.50 (C-5a), 41.12 (C-13), 42.43 (C-14), 46.12 (C-8a), 48.00 [HC(CH_3)_2], 48.36 (C-2), 51.19 (C-1), 73.18 (CH_2OBn), 79.82 (OCH_2Ph), 124.63 (C-11), 148.12 (C-12), 127.21, 127.06, 128.21, 128.28, 128.37, 128.42, 128.56, 130.33, 130.50, 130.62, 130.89, 131.13, 131.34, 131.54, 131.66, 131.79, 132.01, 132.14, 133.28, 135.67, 136.37 [CH_2C_6H_5, 2P_(C_6H_5)_2].

130.89, 131.13, 131.34, 131.34, 131.34, 131.00, 131.77, 132.01, 132.17, 133.20, 133.86, 135.07, 136.37 [CH₂C₆H₅, 2P(C₆H₅)₂].

13: [α]_D²⁵ – 3.8° (c 0.35, CHCl₃); ¹⁹F NMR (CCl₄) δ 2.68 [m, 8F, 2P(C₆F₅)₂], 17.17 [m, 4F, 2P(C₆F₅)₂], 32.16 [m, 8F, 2P(C₆F₅)₂]; ¹H NMR (CDCl₃) δ 0.54 (s, 3H, CH₃), 0.72 (c, 3H, CH₃), 0.96 (d, 3H, CH₃CH, J 6.8 Hz), 0.99 (d, 3H, CH₃CH, J 6.8 Hz); 2.18 [m, 1H, CH(CH₃)₂], 2.88 (d, 1H, CH₂OBn, J 8.9 Hz), 3.42–3.75 (m, 2H, 13-Ha, 14-Ha), 4.36–4.56 (m, 2H, OCH₂Ph, 2H, 13-Hb, 14-Hb), 5.32 (s, 1H, 11-H), 7.48 (m, 5H, Ph).

3.7 (a), 3.42 3.73 (a), 211, 13-Ha, 14-Ha, 4.30 (a), 512, 61. (a), 121, 13-Ha, 14-Ha), 5.32 (s, 1H, 11-H), 7.48 (m, 5H, Ph). 16: $[\alpha]_D^{19} + 20.8^\circ$ (c 0.65, CHCl₃); ¹H NMR (CDCl₃) δ 0.57 (s, 3H, CH₃), 0.79 (s, 3H, CH₃), 1.03 (d, 3H, CH₃CH, J 7 Hz), 1.05 (d, 3H, CH₃CH, J 7 Hz), 2.43 [m, 1H, CH(CH₃)₂], 3.39 (d, 1H, CH₂OPPh₂, J 9.0 Hz), 3.57 (dd, 1H, 13-Ha, J_{hem} 12.0, $J_{13a,2}$ 4.9 Hz), 3.70 (dd, 1H, 14-Ha, J_{hem} 12.5, $J_{14a,1}$ 4.7 Hz), 3.94 (dd, 1H, 13-Hb, J_{hem} 12.0, $J_{13b,2}$ 4.9 Hz), 4.09 (d, 1H, CH₂OBn, J 8.9 Hz), 4.22 (dd, 1H, 14-Hb, J_{hem} 12.0 Hz, $J_{14b,1}$ 4.9 Hz), 5.19 (s, 1H, CHPh), 5.38 (s, 1H, 11-H), 7.47 and 7.79 (m, 15H, PPh₂, CHPh).

References

- V. V. Dunina and I. P. Beletskaya, Zh. Org. Khim., 1992, 28, 1929 (Russ. J. Org. Chem., 1992, 28, 1547).
- 2 I. Ojima, N. Clos and C. Bastos, Tetrahedron, 1989, 45, 6901.
- 3 V. Caplar, G. Comisso and V. Sunjic, Synthesis, 1981, 2, 85.
- K. Tani, T. Yamagata, S. Akutagawa, H. Kumobayashi, T. Taketomi, H. Takaya, A. Miyashita, R. Noyori and S. Otsuka, J. Am. Chem. Soc., 1984, 106, 5208.
 B. A. Murrer, J. M. Brown, P. A. Chaloner, P. N. Nicholson
- 5 B. A. Murrer, J. M. Brown, P. A. Chaloner, P. N. Nicholson and D. Parker, *Synthesis*, 1979, 5, 350.
- 6 T. H. Johnson and A. G. Rangarajan, J. Org. Chem., 1980, 45, 62.
- 7 M. Yamashita, M. Naoi, H. Imoto and T. Oshikawa, Bull. Chem. Soc. Jpn., 1989, 62, 942.
- 8 K. Achiwa, J. Am. Chem. Soc., 1976, 98, 8265.
- M. Eisen, J. Blum, H. Schumann and B. Corella, J. Mol. Catal., 1989, 56, 329.
- 10 A. Miyashita, H. Takaya, T. Souchi and R. Noyori, Tetrahedron, 1984, 40, 1245.

- 11 W. Herz, R. C. Blackstone and M. G. Nair, *J. Org. Chem.*, 1966, **31**, 1800.
- 12 W. Herz, R. C. Blackstone and M. G. Nair, *J. Org. Chem.*, 1967, **32**, 2992.
- 13 L. U. Zalkow, R. A. Ford and J. P. Kutney, J. Org. Chem., 1962, 27, 3535.
- 14 H. B. Kagan and T. P. Dang, J. Am. Chem. Soc., 1972, 94, 6429.

Received: Moscow, 7th May 1996 Cambridge, 10th June 1996; Com. 6/03373C